/* Chrysalide - Outil d'analyse de fichiers binaires * ##FILE## - traduction d'instructions ARMv7 * * Copyright (C) 2017 Cyrille Bagard * * This file is part of Chrysalide. * * Chrysalide is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * Chrysalide is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Chrysalide. If not, see . */ @title SMLABB, SMLABT, SMLATB, SMLATT @id 171 @desc { Signed Multiply Accumulate (halfwords) performs a signed multiply accumulate operation. The multiply acts on two signed 16-bit quantities, taken from either the bottom or the top half of their respective source registers. The other halves of these source registers are ignored. The 32-bit product is added to a 32-bit accumulate value and the result is written to the destination register. If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the APSR. It is not possible for overflow to occur during the multiplication. } @encoding (T1) { @word 1 1 1 1 1 0 1 1 0 0 0 1 Rn(4) Ra(4) Rd(4) 0 0 N(1) M(1) Rm(4) @syntax { @subid 506 @assert { N == 1 M == 1 } @conv { reg_D = Register(Rd) reg_N = Register(Rn) reg_M = Register(Rm) reg_A = Register(Ra) } @asm smlatt reg_D reg_N reg_M reg_A } @syntax { @subid 507 @assert { N == 1 M == 0 } @conv { reg_D = Register(Rd) reg_N = Register(Rn) reg_M = Register(Rm) reg_A = Register(Ra) } @asm smlatb reg_D reg_N reg_M reg_A } @syntax { @subid 508 @assert { N == 0 M == 1 } @conv { reg_D = Register(Rd) reg_N = Register(Rn) reg_M = Register(Rm) reg_A = Register(Ra) } @asm smlabt reg_D reg_N reg_M reg_A } @syntax { @subid 509 @assert { N == 0 M == 0 } @conv { reg_D = Register(Rd) reg_N = Register(Rn) reg_M = Register(Rm) reg_A = Register(Ra) } @asm smlabb reg_D reg_N reg_M reg_A } } @encoding (A1) { @word cond(4) 0 0 0 1 0 0 0 0 Rd(4) Ra(4) Rm(4) 1 M(1) N(1) 0 Rn(4) @syntax { @subid 510 @assert { N == 1 M == 1 } @conv { reg_D = Register(Rd) reg_N = Register(Rn) reg_M = Register(Rm) reg_A = Register(Ra) } @asm smlatt reg_D reg_N reg_M reg_A @rules { check g_arm_instruction_set_cond(cond) } } @syntax { @subid 511 @assert { N == 1 M == 0 } @conv { reg_D = Register(Rd) reg_N = Register(Rn) reg_M = Register(Rm) reg_A = Register(Ra) } @asm smlatb reg_D reg_N reg_M reg_A @rules { check g_arm_instruction_set_cond(cond) } } @syntax { @subid 512 @assert { N == 0 M == 1 } @conv { reg_D = Register(Rd) reg_N = Register(Rn) reg_M = Register(Rm) reg_A = Register(Ra) } @asm smlabt reg_D reg_N reg_M reg_A @rules { check g_arm_instruction_set_cond(cond) } } @syntax { @subid 513 @assert { N == 0 M == 0 } @conv { reg_D = Register(Rd) reg_N = Register(Rn) reg_M = Register(Rm) reg_A = Register(Ra) } @asm smlabb reg_D reg_N reg_M reg_A @rules { check g_arm_instruction_set_cond(cond) } } }