/* Chrysalide - Outil d'analyse de fichiers binaires * ##FILE## - traduction d'instructions ARMv7 * * Copyright (C) 2017 Cyrille Bagard * * This file is part of Chrysalide. * * Chrysalide is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * Chrysalide is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Chrysalide. If not, see <http://www.gnu.org/licenses/>. */ @title SMLALBB, SMLALBT, SMLALTB, SMLALTT @id 174 @desc { Signed Multiply Accumulate Long (halfwords) multiplies two signed 16-bit values to produce a 32-bit value, and accumulates this with a 64-bit value. The multiply acts on two signed 16-bit quantities, taken from either the bottom or the top half of their respective source registers. The other halves of these source registers are ignored. The 32-bit product is sign-extended and accumulated with a 64-bit accumulate value. Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected if it occurs. Instead, the result wraps around modulo 264. } @encoding (T1) { @word 1 1 1 1 1 0 1 1 1 1 0 0 Rn(4) RdLo(4) RdHi(4) 1 0 N(1) M(1) Rm(4) @syntax { @subid 521 @assert { N == 1 M == 1 } @conv { reg_DLO = Register(RdLo) reg_DHI = Register(RdHi) reg_N = Register(Rn) reg_M = Register(Rm) } @asm smlaltt reg_DLO reg_DHI reg_N reg_M } @syntax { @subid 522 @assert { N == 1 M == 0 } @conv { reg_DLO = Register(RdLo) reg_DHI = Register(RdHi) reg_N = Register(Rn) reg_M = Register(Rm) } @asm smlaltb reg_DLO reg_DHI reg_N reg_M } @syntax { @subid 523 @assert { N == 0 M == 1 } @conv { reg_DLO = Register(RdLo) reg_DHI = Register(RdHi) reg_N = Register(Rn) reg_M = Register(Rm) } @asm smlalbt reg_DLO reg_DHI reg_N reg_M } @syntax { @subid 524 @assert { N == 0 M == 0 } @conv { reg_DLO = Register(RdLo) reg_DHI = Register(RdHi) reg_N = Register(Rn) reg_M = Register(Rm) } @asm smlalbb reg_DLO reg_DHI reg_N reg_M } } @encoding (A1) { @word cond(4) 0 0 0 1 0 1 0 0 RdHi(4) RdLo(4) Rm(4) 1 M(1) N(1) 0 Rn(4) @syntax { @subid 525 @assert { N == 1 M == 1 } @conv { reg_DLO = Register(RdLo) reg_DHI = Register(RdHi) reg_N = Register(Rn) reg_M = Register(Rm) } @asm smlaltt reg_DLO reg_DHI reg_N reg_M @rules { check g_arm_instruction_set_cond(cond) } } @syntax { @subid 526 @assert { N == 1 M == 0 } @conv { reg_DLO = Register(RdLo) reg_DHI = Register(RdHi) reg_N = Register(Rn) reg_M = Register(Rm) } @asm smlaltb reg_DLO reg_DHI reg_N reg_M @rules { check g_arm_instruction_set_cond(cond) } } @syntax { @subid 527 @assert { N == 0 M == 1 } @conv { reg_DLO = Register(RdLo) reg_DHI = Register(RdHi) reg_N = Register(Rn) reg_M = Register(Rm) } @asm smlalbt reg_DLO reg_DHI reg_N reg_M @rules { check g_arm_instruction_set_cond(cond) } } @syntax { @subid 528 @assert { N == 0 M == 0 } @conv { reg_DLO = Register(RdLo) reg_DHI = Register(RdHi) reg_N = Register(Rn) reg_M = Register(Rm) } @asm smlalbb reg_DLO reg_DHI reg_N reg_M @rules { check g_arm_instruction_set_cond(cond) } } }