/* Chrysalide - Outil d'analyse de fichiers binaires
 * ##FILE## - traduction d'instructions ARMv7
 *
 * Copyright (C) 2017 Cyrille Bagard
 *
 *  This file is part of Chrysalide.
 *
 *  Chrysalide is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  Chrysalide is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with Chrysalide.  If not, see <http://www.gnu.org/licenses/>.
 */


@title VCGE (immediate #0)

@id 289

@desc {

	VCGE #0 (Vector Compare Greater Than or Equal to Zero) take each element in a vector, and compares it with zero. If it is greater than or equal to zero, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros. The operand vector elements can be any one of: • 8-bit, 16-bit, or 32-bit signed integers • 32-bit floating-point numbers. The result vector elements are fields the same size as the operand vector elements. Depending on settings in the CPACR, NSACR, and HCPTR registers, and the security state and mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. Summary of access controls for Advanced SIMD functionality on page B1-1232 summarizes these controls. ARM deprecates the conditional execution of any Advanced SIMD instruction encoding that is not also available as a VFP instruction encoding, see Conditional execution on page A8-288.

}

@encoding (T1) {

	@word 1 1 1 1 1 1 1 1 1 D(1) 1 1 size(2) 0 1 Vd(4) 0 F(1) 0 0 1 Q(1) M(1) 0 Vm(4)

	@syntax {

		@subid 1085

		@assert {

			Q == 1
			size == 0
			F == 0

		}

		@conv {

			qwvec_D = QuadWordVector(D:Vd)
			qwvec_M = QuadWordVector(M:Vm)
			zero = Zeros(8)

		}

		@asm vcge.s8 ?qwvec_D qwvec_M zero

	}

	@syntax {

		@subid 1086

		@assert {

			Q == 1
			size == 1
			F == 0

		}

		@conv {

			qwvec_D = QuadWordVector(D:Vd)
			qwvec_M = QuadWordVector(M:Vm)
			zero = Zeros(8)

		}

		@asm vcge.s16 ?qwvec_D qwvec_M zero

	}

	@syntax {

		@subid 1087

		@assert {

			Q == 1
			size == 10
			F == 0

		}

		@conv {

			qwvec_D = QuadWordVector(D:Vd)
			qwvec_M = QuadWordVector(M:Vm)
			zero = Zeros(8)

		}

		@asm vcge.s32 ?qwvec_D qwvec_M zero

	}

	@syntax {

		@subid 1088

		@assert {

			Q == 1
			size == 10
			F == 1

		}

		@conv {

			qwvec_D = QuadWordVector(D:Vd)
			qwvec_M = QuadWordVector(M:Vm)
			zero = Zeros(8)

		}

		@asm vcge.f32 ?qwvec_D qwvec_M zero

	}

	@syntax {

		@subid 1089

		@assert {

			Q == 0
			size == 0
			F == 0

		}

		@conv {

			dwvec_D = DoubleWordVector(D:Vd)
			dwvec_M = DoubleWordVector(M:Vm)
			zero = Zeros(8)

		}

		@asm vcge.s8 ?dwvec_D dwvec_M zero

	}

	@syntax {

		@subid 1090

		@assert {

			Q == 0
			size == 1
			F == 0

		}

		@conv {

			dwvec_D = DoubleWordVector(D:Vd)
			dwvec_M = DoubleWordVector(M:Vm)
			zero = Zeros(8)

		}

		@asm vcge.s16 ?dwvec_D dwvec_M zero

	}

	@syntax {

		@subid 1091

		@assert {

			Q == 0
			size == 10
			F == 0

		}

		@conv {

			dwvec_D = DoubleWordVector(D:Vd)
			dwvec_M = DoubleWordVector(M:Vm)
			zero = Zeros(8)

		}

		@asm vcge.s32 ?dwvec_D dwvec_M zero

	}

	@syntax {

		@subid 1092

		@assert {

			Q == 0
			size == 10
			F == 1

		}

		@conv {

			dwvec_D = DoubleWordVector(D:Vd)
			dwvec_M = DoubleWordVector(M:Vm)
			zero = Zeros(8)

		}

		@asm vcge.f32 ?dwvec_D dwvec_M zero

	}

}

@encoding (A1) {

	@word 1 1 1 1 1 1 1 1 1 D(1) 1 1 size(2) 0 1 Vd(4) 0 F(1) 0 0 1 Q(1) M(1) 0 Vm(4)

	@syntax {

		@subid 1093

		@assert {

			Q == 1
			size == 0
			F == 0

		}

		@conv {

			qwvec_D = QuadWordVector(D:Vd)
			qwvec_M = QuadWordVector(M:Vm)
			zero = Zeros(8)

		}

		@asm vcge.s8 ?qwvec_D qwvec_M zero

	}

	@syntax {

		@subid 1094

		@assert {

			Q == 1
			size == 1
			F == 0

		}

		@conv {

			qwvec_D = QuadWordVector(D:Vd)
			qwvec_M = QuadWordVector(M:Vm)
			zero = Zeros(8)

		}

		@asm vcge.s16 ?qwvec_D qwvec_M zero

	}

	@syntax {

		@subid 1095

		@assert {

			Q == 1
			size == 10
			F == 0

		}

		@conv {

			qwvec_D = QuadWordVector(D:Vd)
			qwvec_M = QuadWordVector(M:Vm)
			zero = Zeros(8)

		}

		@asm vcge.s32 ?qwvec_D qwvec_M zero

	}

	@syntax {

		@subid 1096

		@assert {

			Q == 1
			size == 10
			F == 1

		}

		@conv {

			qwvec_D = QuadWordVector(D:Vd)
			qwvec_M = QuadWordVector(M:Vm)
			zero = Zeros(8)

		}

		@asm vcge.f32 ?qwvec_D qwvec_M zero

	}

	@syntax {

		@subid 1097

		@assert {

			Q == 0
			size == 0
			F == 0

		}

		@conv {

			dwvec_D = DoubleWordVector(D:Vd)
			dwvec_M = DoubleWordVector(M:Vm)
			zero = Zeros(8)

		}

		@asm vcge.s8 ?dwvec_D dwvec_M zero

	}

	@syntax {

		@subid 1098

		@assert {

			Q == 0
			size == 1
			F == 0

		}

		@conv {

			dwvec_D = DoubleWordVector(D:Vd)
			dwvec_M = DoubleWordVector(M:Vm)
			zero = Zeros(8)

		}

		@asm vcge.s16 ?dwvec_D dwvec_M zero

	}

	@syntax {

		@subid 1099

		@assert {

			Q == 0
			size == 10
			F == 0

		}

		@conv {

			dwvec_D = DoubleWordVector(D:Vd)
			dwvec_M = DoubleWordVector(M:Vm)
			zero = Zeros(8)

		}

		@asm vcge.s32 ?dwvec_D dwvec_M zero

	}

	@syntax {

		@subid 1100

		@assert {

			Q == 0
			size == 10
			F == 1

		}

		@conv {

			dwvec_D = DoubleWordVector(D:Vd)
			dwvec_M = DoubleWordVector(M:Vm)
			zero = Zeros(8)

		}

		@asm vcge.f32 ?dwvec_D dwvec_M zero

	}

}