/* OpenIDA - Outil d'analyse de fichiers binaires * processor.c - manipulation du processeur de la JVM * * Copyright (C) 2009 Cyrille Bagard * * This file is part of OpenIDA. * * OpenIDA is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * OpenIDA is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Foobar. If not, see <http://www.gnu.org/licenses/>. */ #include "processor.h" #include "instruction.h" #include "opcodes.h" #include "../processor-int.h" /* Définition du processeur de la JVM (instance) */ struct _GJvmProcessor { GArchProcessor parent; /* Instance parente */ }; /* Définition du processeur de la JVM (classe) */ struct _GJvmProcessorClass { GArchProcessorClass parent; /* Classe parente */ }; /* Initialise la classe des processeurs de JVM. */ static void g_jvm_processor_class_init(GJvmProcessorClass *); /* Initialise une instance de processeur de JVM. */ static void g_jvm_processor_init(GJvmProcessor *); /* Décode une instruction dans un flux de données. */ static GArchInstruction *g_jvm_processor_decode_instruction(const GJvmProcessor *, const bin_t *, off_t *, off_t, vmpa_t); /* Indique le type défini par la GLib pour le processeur JVM. */ G_DEFINE_TYPE(GJvmProcessor, g_jvm_processor, G_TYPE_ARCH_PROCESSOR); /****************************************************************************** * * * Paramètres : klass = classe à initialiser. * * * * Description : Initialise la classe des processeurs de JVM. * * * * Retour : - * * * * Remarques : - * * * ******************************************************************************/ static void g_jvm_processor_class_init(GJvmProcessorClass *klass) { } /****************************************************************************** * * * Paramètres : proc = instance à initialiser. * * * * Description : Initialise une instance de processeur de JVM. * * * * Retour : - * * * * Remarques : - * * * ******************************************************************************/ static void g_jvm_processor_init(GJvmProcessor *proc) { GArchProcessor *parent; /* Instance parente */ parent = G_ARCH_PROCESSOR(proc); parent->endianness = SRE_BIG; parent->memsize = MDS_32_BITS; parent->decode = (decode_instruction_fc)g_jvm_processor_decode_instruction; } /****************************************************************************** * * * Paramètres : - * * * * Description : Crée le support de l'architecture JVM. * * * * Retour : Architecture mise en place. * * * * Remarques : - * * * ******************************************************************************/ GArchProcessor *g_jvm_processor_new(void) { GArchProcessor *result; /* Structure à retourner */ result = g_object_new(G_TYPE_JVM_PROCESSOR, NULL); return result; } /****************************************************************************** * * * Paramètres : proc = architecture visée par la procédure. * * data = flux de données à analyser. * * pos = position courante dans ce flux. [OUT] * * len = taille totale des données à analyser. * * addr = adresse virtuelle de l'instruction. * * * * Description : Décode une instruction dans un flux de données. * * * * Retour : Instruction mise en place. * * * * Remarques : - * * * ******************************************************************************/ static GArchInstruction *g_jvm_processor_decode_instruction(const GJvmProcessor *proc, const bin_t *data, off_t *pos, off_t len, vmpa_t addr) { GArchInstruction *result; /* Instruction à renvoyer */ bool wide; /* Utilisation d'étendues */ bool care; /* Traitement des opcodes */ JvmOpcodes id; /* Identifiant d'instruction */ id = jvm_guess_next_instruction(data, *pos, len, &wide, &care); if (id != JOP_COUNT && !care) { if (wide) (*pos)++; (*pos)++; } switch (id) { case JOP_NOP: result = jvm_read_instr_nop(data, pos, len, addr, proc); break; case JOP_ACONST_NULL: result = jvm_read_instr_aconst_null(data, pos, len, addr, proc); break; case JOP_ICONST_M1: case JOP_ICONST_0: case JOP_ICONST_1: case JOP_ICONST_2: case JOP_ICONST_3: case JOP_ICONST_4: case JOP_ICONST_5: result = jvm_read_instr_iconst_n(data, pos, len, addr, proc); break; case JOP_POP: result = jvm_read_instr_pop(data, pos, len, addr, proc); break; case JOP_POP2: result = jvm_read_instr_pop2(data, pos, len, addr, proc); break; case JOP_DUP: result = jvm_read_instr_dup(data, pos, len, addr, proc); break; case JOP_DUP_X1: result = jvm_read_instr_dup_x1(data, pos, len, addr, proc); break; case JOP_DUP_X2: result = jvm_read_instr_dup_x2(data, pos, len, addr, proc); break; case JOP_DUP2: result = jvm_read_instr_dup2(data, pos, len, addr, proc); break; case JOP_DUP2_X1: result = jvm_read_instr_dup2_x1(data, pos, len, addr, proc); break; case JOP_DUP2_X2: result = jvm_read_instr_dup2_x2(data, pos, len, addr, proc); break; case JOP_IADD: result = jvm_read_instr_iadd(data, pos, len, addr, proc); break; case JOP_I2L: result = jvm_read_instr_i2l(data, pos, len, addr, proc); break; case JOP_I2F: result = jvm_read_instr_i2f(data, pos, len, addr, proc); break; case JOP_I2D: result = jvm_read_instr_i2d(data, pos, len, addr, proc); break; case JOP_L2I: result = jvm_read_instr_l2i(data, pos, len, addr, proc); break; case JOP_L2F: result = jvm_read_instr_l2f(data, pos, len, addr, proc); break; case JOP_L2D: result = jvm_read_instr_l2d(data, pos, len, addr, proc); break; case JOP_F2I: result = jvm_read_instr_f2i(data, pos, len, addr, proc); break; case JOP_F2L: result = jvm_read_instr_f2l(data, pos, len, addr, proc); break; case JOP_F2D: result = jvm_read_instr_f2d(data, pos, len, addr, proc); break; case JOP_D2I: result = jvm_read_instr_d2i(data, pos, len, addr, proc); break; case JOP_D2L: result = jvm_read_instr_d2l(data, pos, len, addr, proc); break; case JOP_D2F: result = jvm_read_instr_d2f(data, pos, len, addr, proc); break; case JOP_I2B: result = jvm_read_instr_i2b(data, pos, len, addr, proc); break; case JOP_I2C: result = jvm_read_instr_i2c(data, pos, len, addr, proc); break; case JOP_I2S: result = jvm_read_instr_i2s(data, pos, len, addr, proc); break; case JOP_ILOAD_0: case JOP_ILOAD_1: case JOP_ILOAD_2: case JOP_ILOAD_3: result = jvm_read_instr_iload_n(data, pos, len, addr, proc); break; case JOP_ALOAD_0: case JOP_ALOAD_1: case JOP_ALOAD_2: case JOP_ALOAD_3: result = jvm_read_instr_aload_n(data, pos, len, addr, proc); break; case JOP_ISTORE_0: case JOP_ISTORE_1: case JOP_ISTORE_2: case JOP_ISTORE_3: result = jvm_read_instr_istore_n(data, pos, len, addr, proc); break; case JOP_IRETURN: result = jvm_read_instr_ireturn(data, pos, len, addr, proc); break; case JOP_LRETURN: result = jvm_read_instr_lreturn(data, pos, len, addr, proc); break; case JOP_FRETURN: result = jvm_read_instr_freturn(data, pos, len, addr, proc); break; case JOP_DRETURN: result = jvm_read_instr_dreturn(data, pos, len, addr, proc); break; case JOP_ARETURN: result = jvm_read_instr_areturn(data, pos, len, addr, proc); break; case JOP_RETURN: result = jvm_read_instr_return(data, pos, len, addr, proc); break; case JOP_GETSTATIC: result = jvm_read_instr_getstatic(data, pos, len, addr, proc); break; case JOP_INVOKE_VIRTUAL: result = jvm_read_instr_invokevirtual(data, pos, len, addr, proc); break; case JOP_INVOKE_SPECIAL: result = jvm_read_instr_invokespecial(data, pos, len, addr, proc); break; case JOP_INVOKE_STATIC: result = jvm_read_instr_invokestatic(data, pos, len, addr, proc); break; default: result = NULL; break; } return result; }