1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
/* Chrysalide - Outil d'analyse de fichiers binaires
* ##FILE## - traduction d'instructions ARMv7
*
* Copyright (C) 2017 Cyrille Bagard
*
* This file is part of Chrysalide.
*
* Chrysalide is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Chrysalide is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Chrysalide. If not, see <http://www.gnu.org/licenses/>.
*/
@title VADDHN
@id 279
@desc {
Vector Add and Narrow, returning High Half adds corresponding elements in two quadword vectors, and places the most significant half of each result in a doubleword vector. The results are truncated. (For rounded results, see VRADDHN on page A8-1022). The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned integers. Depending on settings in the CPACR, NSACR, and HCPTR registers, and the security state and mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. Summary of access controls for Advanced SIMD functionality on page B1-1232 summarizes these controls. ARM deprecates the conditional execution of any Advanced SIMD instruction encoding that is not also available as a VFP instruction encoding, see Conditional execution on page A8-288.
}
@encoding (T1) {
@word 1 1 1 0 1 1 1 1 1 D(1) size(2) Vn(4) Vd(4) 0 1 0 0 N(1) 0 M(1) 0 Vm(4)
@syntax {
@subid 919
@assert {
size == 0
}
@conv {
dwvec_D = DoubleWordVector(D:Vd)
qwvec_N = QuadWordVector(N:Vn)
qwvec_M = QuadWordVector(M:Vm)
}
@asm vaddhn.i16 dwvec_D qwvec_N qwvec_M
}
@syntax {
@subid 920
@assert {
size == 1
}
@conv {
dwvec_D = DoubleWordVector(D:Vd)
qwvec_N = QuadWordVector(N:Vn)
qwvec_M = QuadWordVector(M:Vm)
}
@asm vaddhn.i32 dwvec_D qwvec_N qwvec_M
}
@syntax {
@subid 921
@assert {
size == 10
}
@conv {
dwvec_D = DoubleWordVector(D:Vd)
qwvec_N = QuadWordVector(N:Vn)
qwvec_M = QuadWordVector(M:Vm)
}
@asm vaddhn.i64 dwvec_D qwvec_N qwvec_M
}
}
@encoding (A1) {
@word 1 1 1 0 1 1 1 1 1 D(1) size(2) Vn(4) Vd(4) 0 1 0 0 N(1) 0 M(1) 0 Vm(4)
@syntax {
@subid 922
@assert {
size == 0
}
@conv {
dwvec_D = DoubleWordVector(D:Vd)
qwvec_N = QuadWordVector(N:Vn)
qwvec_M = QuadWordVector(M:Vm)
}
@asm vaddhn.i16 dwvec_D qwvec_N qwvec_M
}
@syntax {
@subid 923
@assert {
size == 1
}
@conv {
dwvec_D = DoubleWordVector(D:Vd)
qwvec_N = QuadWordVector(N:Vn)
qwvec_M = QuadWordVector(M:Vm)
}
@asm vaddhn.i32 dwvec_D qwvec_N qwvec_M
}
@syntax {
@subid 924
@assert {
size == 10
}
@conv {
dwvec_D = DoubleWordVector(D:Vd)
qwvec_N = QuadWordVector(N:Vn)
qwvec_M = QuadWordVector(M:Vm)
}
@asm vaddhn.i64 dwvec_D qwvec_N qwvec_M
}
}
|