1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
/* Chrysalide - Outil d'analyse de fichiers binaires
* ##FILE## - traduction d'instructions ARMv7
*
* Copyright (C) 2017 Cyrille Bagard
*
* This file is part of Chrysalide.
*
* Chrysalide is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Chrysalide is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Chrysalide. If not, see <http://www.gnu.org/licenses/>.
*/
@title VFNMA, VFNMS
@id 310
@desc {
Vector Fused Negate Multiply Accumulate negates one floating-point register value and multiplies it by another floating-point register value, adds the negation of the floating-point value in the destination register to the product, and writes the result back to the destination register. The instruction does not round the result of the multiply before the addition. Vector Fused Negate Multiply Subtract multiplies together two floating-point register values, adds the negation of the floating-point value in the destination register to the product, and writes the result back to the destination register. The instruction does not round the result of the multiply before the addition. Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the security state and mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. Summary of general controls of CP10 and CP11 functionality on page B1-1230 summarizes these controls.
}
@encoding (T1) {
@word 1 1 1 0 1 1 1 0 1 D(1) 0 1 Vn(4) Vd(4) 1 0 1 sz(1) N(1) op(1) M(1) 0 Vm(4)
@syntax {
@subid 1317
@assert {
sz == 1
op == 0
}
@conv {
dwvec_D = DoubleWordVector(D:Vd)
dwvec_N = DoubleWordVector(N:Vn)
dwvec_M = DoubleWordVector(M:Vm)
}
@asm vfnma.f64 dwvec_D dwvec_N dwvec_M
}
@syntax {
@subid 1318
@assert {
sz == 1
op == 1
}
@conv {
dwvec_D = DoubleWordVector(D:Vd)
dwvec_N = DoubleWordVector(N:Vn)
dwvec_M = DoubleWordVector(M:Vm)
}
@asm vfnms.f64 dwvec_D dwvec_N dwvec_M
}
@syntax {
@subid 1319
@assert {
sz == 0
op == 0
}
@conv {
swvec_D = SingleWordVector(Vd:D)
swvec_N = SingleWordVector(Vn:N)
swvec_M = SingleWordVector(Vm:M)
}
@asm vfnma.f32 swvec_D swvec_N swvec_M
}
@syntax {
@subid 1320
@assert {
sz == 0
op == 1
}
@conv {
swvec_D = SingleWordVector(Vd:D)
swvec_N = SingleWordVector(Vn:N)
swvec_M = SingleWordVector(Vm:M)
}
@asm vfnms.f32 swvec_D swvec_N swvec_M
}
}
@encoding (A1) {
@word 1 1 1 0 1 1 1 0 1 D(1) 0 1 Vn(4) Vd(4) 1 0 1 sz(1) N(1) op(1) M(1) 0 Vm(4)
@syntax {
@subid 1321
@assert {
sz == 1
op == 0
}
@conv {
dwvec_D = DoubleWordVector(D:Vd)
dwvec_N = DoubleWordVector(N:Vn)
dwvec_M = DoubleWordVector(M:Vm)
}
@asm vfnma.f64 dwvec_D dwvec_N dwvec_M
}
@syntax {
@subid 1322
@assert {
sz == 1
op == 1
}
@conv {
dwvec_D = DoubleWordVector(D:Vd)
dwvec_N = DoubleWordVector(N:Vn)
dwvec_M = DoubleWordVector(M:Vm)
}
@asm vfnms.f64 dwvec_D dwvec_N dwvec_M
}
@syntax {
@subid 1323
@assert {
sz == 0
op == 0
}
@conv {
swvec_D = SingleWordVector(Vd:D)
swvec_N = SingleWordVector(Vn:N)
swvec_M = SingleWordVector(Vm:M)
}
@asm vfnma.f32 swvec_D swvec_N swvec_M
}
@syntax {
@subid 1324
@assert {
sz == 0
op == 1
}
@conv {
swvec_D = SingleWordVector(Vd:D)
swvec_N = SingleWordVector(Vn:N)
swvec_M = SingleWordVector(Vm:M)
}
@asm vfnms.f32 swvec_D swvec_N swvec_M
}
}
|