blob: adb8b43510ed941ea1dfd3491e3720a3a2076ff2 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
/* Chrysalide - Outil d'analyse de fichiers binaires
* ##FILE## - traduction d'instructions ARMv7
*
* Copyright (C) 2017 Cyrille Bagard
*
* This file is part of Chrysalide.
*
* Chrysalide is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Chrysalide is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Chrysalide. If not, see <http://www.gnu.org/licenses/>.
*/
@title VRECPS
@id 359
@desc {
Vector Reciprocal Step multiplies the elements of one vector by the corresponding elements of another vector, subtracts each of the products from 2.0, and places the results into the elements of the destination vector. The operand and result elements are 32-bit floating-point numbers. For details of the operation performed by this instruction see Floating-point reciprocal estimate and step on page A2-85. Depending on settings in the CPACR, NSACR, and HCPTR registers, and the security state and mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. Summary of access controls for Advanced SIMD functionality on page B1-1232 summarizes these controls. ARM deprecates the conditional execution of any Advanced SIMD instruction encoding that is not also available as a VFP instruction encoding, see Conditional execution on page A8-288.
}
@encoding (T1) {
@word 1 1 1 0 1 1 1 1 0 D(1) 0 sz(1) Vn(4) Vd(4) 1 1 1 1 N(1) Q(1) M(1) 1 Vm(4)
@syntax {
@subid 2883
@assert {
Q == 1
}
@conv {
qwvec_D = QuadWordVector(D:Vd)
qwvec_N = QuadWordVector(N:Vn)
qwvec_M = QuadWordVector(M:Vm)
}
@asm vrecps.f32 ?qwvec_D qwvec_N qwvec_M
}
@syntax {
@subid 2884
@assert {
Q == 0
}
@conv {
dwvec_D = DoubleWordVector(D:Vd)
dwvec_N = DoubleWordVector(N:Vn)
dwvec_M = DoubleWordVector(M:Vm)
}
@asm vrecps.f32 ?dwvec_D dwvec_N dwvec_M
}
}
@encoding (A1) {
@word 1 1 1 0 1 1 1 1 0 D(1) 0 sz(1) Vn(4) Vd(4) 1 1 1 1 N(1) Q(1) M(1) 1 Vm(4)
@syntax {
@subid 2885
@assert {
Q == 1
}
@conv {
qwvec_D = QuadWordVector(D:Vd)
qwvec_N = QuadWordVector(N:Vn)
qwvec_M = QuadWordVector(M:Vm)
}
@asm vrecps.f32 ?qwvec_D qwvec_N qwvec_M
}
@syntax {
@subid 2886
@assert {
Q == 0
}
@conv {
dwvec_D = DoubleWordVector(D:Vd)
dwvec_N = DoubleWordVector(N:Vn)
dwvec_M = DoubleWordVector(M:Vm)
}
@asm vrecps.f32 ?dwvec_D dwvec_N dwvec_M
}
}
|