blob: abf81435c6c026be9f079a00d7bca167a4fd88d0 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
|
/* Chrysalide - Outil d'analyse de fichiers binaires
* ##FILE## - traduction d'instructions ARMv7
*
* Copyright (C) 2017 Cyrille Bagard
*
* This file is part of Chrysalide.
*
* Chrysalide is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Chrysalide is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Foobar. If not, see <http://www.gnu.org/licenses/>.
*/
@title LDRD (register)
@id 73
@desc {
Load Register Dual (register) calculates an address from a base register value and a register offset, loads two words from memory, and writes them to two registers. It can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses on page A8-294.
}
@encoding (A1) {
@word cond(4) 0 0 0 P(1) U(1) 0 W(1) 0 Rn(4) Rt(4) 0 0 0 0 1 1 0 1 Rm(4)
@syntax {
@assert {
P == 1
P == 1 && W == 0
}
@conv {
reg_T = Register(Rt)
reg_T2 = NextRegister(Rt)
reg_N = Register(Rn)
reg_M = Register(Rm)
maccess = MemAccessOffset(reg_N, reg_M)
}
@asm ldrd reg_T reg_T2 maccess
@rules {
check g_arm_instruction_set_cond(cond)
}
}
@syntax {
@assert {
P == 1
P == 0 || W == 1
}
@conv {
reg_T = Register(Rt)
reg_T2 = NextRegister(Rt)
reg_N = Register(Rn)
reg_M = Register(Rm)
maccess = MemAccessPreIndexed(reg_N, reg_M)
}
@asm ldrd reg_T reg_T2 maccess
@rules {
check g_arm_instruction_set_cond(cond)
}
}
@syntax {
@assert {
P == 0
P == 0 || W == 1
}
@conv {
reg_T = Register(Rt)
reg_T2 = NextRegister(Rt)
reg_N = Register(Rn)
reg_M = Register(Rm)
maccess = MemAccessPostIndexed(reg_N, reg_M)
}
@asm ldrd reg_T reg_T2 maccess
@rules {
check g_arm_instruction_set_cond(cond)
}
}
}
|