blob: 9f56ebb71bf495a2b97d3c74f1e3185afccb8b34 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
/* Chrysalide - Outil d'analyse de fichiers binaires
* ##FILE## - traduction d'instructions ARMv7
*
* Copyright (C) 2017 Cyrille Bagard
*
* This file is part of Chrysalide.
*
* Chrysalide is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Chrysalide is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Chrysalide. If not, see <http://www.gnu.org/licenses/>.
*/
@title SMLAD
@id 176
@desc {
Signed Multiply Accumulate Dual performs two signed 16 × 16-bit multiplications. It adds the products to a 32-bit accumulate operand. Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This produces top × bottom and bottom × top multiplication. This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the multiplications.
}
@encoding (T1) {
@word 1 1 1 1 1 0 1 1 0 0 1 0 Rn(4) Ra(4) Rd(4) 0 0 0 M(1) Rm(4)
@syntax {
@subid 463
@assert {
M == 0
}
@conv {
reg_D = Register(Rd)
reg_N = Register(Rn)
reg_M = Register(Rm)
reg_A = Register(Ra)
}
@asm smlad reg_D reg_N reg_M reg_A
}
@syntax {
@subid 464
@assert {
M == 1
}
@conv {
reg_D = Register(Rd)
reg_N = Register(Rn)
reg_M = Register(Rm)
reg_A = Register(Ra)
}
@asm smladx reg_D reg_N reg_M reg_A
}
}
@encoding (A1) {
@word cond(4) 0 1 1 1 0 0 0 0 Rd(4) Ra(4) Rm(4) 0 0 M(1) 1 Rn(4)
@syntax {
@subid 465
@assert {
M == 0
}
@conv {
reg_D = Register(Rd)
reg_N = Register(Rn)
reg_M = Register(Rm)
reg_A = Register(Ra)
}
@asm smlad reg_D reg_N reg_M reg_A
@rules {
check g_arm_instruction_set_cond(cond)
}
}
@syntax {
@subid 466
@assert {
M == 1
}
@conv {
reg_D = Register(Rd)
reg_N = Register(Rn)
reg_M = Register(Rm)
reg_A = Register(Ra)
}
@asm smladx reg_D reg_N reg_M reg_A
@rules {
check g_arm_instruction_set_cond(cond)
}
}
}
|