summaryrefslogtreecommitdiff
path: root/plugins/arm/v7/opdefs/A88283_vadd.d
blob: 096dbc08c54ba27734ac2b99261c1df49b9e28eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

/* Chrysalide - Outil d'analyse de fichiers binaires
 * ##FILE## - traduction d'instructions ARMv7
 *
 * Copyright (C) 2017 Cyrille Bagard
 *
 *  This file is part of Chrysalide.
 *
 *  Chrysalide is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  Chrysalide is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with Chrysalide.  If not, see <http://www.gnu.org/licenses/>.
 */


@title VADD (floating-point)

@id 275

@desc {

	Vector Add adds corresponding elements in two vectors, and places the results in the destination vector. Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the security state and mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. Summary of general controls of CP10 and CP11 functionality on page B1-1230 and Summary of access controls for Advanced SIMD functionality on page B1-1232 summarize these controls. ARM deprecates the conditional execution of any Advanced SIMD instruction encoding that is not also available as a VFP instruction encoding, see Conditional execution on page A8-288.

}

@encoding (T1) {

	@word 1 1 1 0 1 1 1 1 0 D(1) 0 sz(1) Vn(4) Vd(4) 1 1 0 1 N(1) Q(1) M(1) 0 Vm(4)

	@syntax {

		@subid 903

		@assert {

			Q == 1
			sz == 0

		}

		@conv {

			qwvec_D = QuadWordVector(D:Vd)
			qwvec_N = QuadWordVector(N:Vn)
			qwvec_M = QuadWordVector(M:Vm)

		}

		@asm vadd.f32 ?qwvec_D qwvec_N qwvec_M

	}

	@syntax {

		@subid 904

		@assert {

			Q == 0
			sz == 0

		}

		@conv {

			dwvec_D = DoubleWordVector(D:Vd)
			dwvec_N = DoubleWordVector(N:Vn)
			dwvec_M = DoubleWordVector(M:Vm)

		}

		@asm vadd.f32 ?dwvec_D dwvec_N dwvec_M

	}

}

@encoding (T2) {

	@word 1 1 1 0 1 1 1 0 0 D(1) 1 1 Vn(4) Vd(4) 1 0 1 sz(1) N(1) 0 M(1) 0 Vm(4)

	@syntax {

		@subid 905

		@assert {

			sz == 0

		}

		@conv {

			swvec_D = SingleWordVector(Vd:D)
			swvec_N = SingleWordVector(Vn:N)
			swvec_M = SingleWordVector(Vm:M)

		}

		@asm vadd.f32 ?swvec_D swvec_N swvec_M

	}

	@syntax {

		@subid 906

		@assert {

			sz == 1

		}

		@conv {

			dwvec_D = DoubleWordVector(D:Vd)
			dwvec_N = DoubleWordVector(N:Vn)
			dwvec_M = DoubleWordVector(M:Vm)

		}

		@asm vadd.f64 ?dwvec_D dwvec_N dwvec_M

	}

}

@encoding (A1) {

	@word 1 1 1 0 1 1 1 1 0 D(1) 0 sz(1) Vn(4) Vd(4) 1 1 0 1 N(1) Q(1) M(1) 0 Vm(4)

	@syntax {

		@subid 907

		@assert {

			Q == 1
			sz == 0

		}

		@conv {

			qwvec_D = QuadWordVector(D:Vd)
			qwvec_N = QuadWordVector(N:Vn)
			qwvec_M = QuadWordVector(M:Vm)

		}

		@asm vadd.f32 ?qwvec_D qwvec_N qwvec_M

	}

	@syntax {

		@subid 908

		@assert {

			Q == 0
			sz == 0

		}

		@conv {

			dwvec_D = DoubleWordVector(D:Vd)
			dwvec_N = DoubleWordVector(N:Vn)
			dwvec_M = DoubleWordVector(M:Vm)

		}

		@asm vadd.f32 ?dwvec_D dwvec_N dwvec_M

	}

}

@encoding (A2) {

	@word 1 1 1 0 1 1 1 0 0 D(1) 1 1 Vn(4) Vd(4) 1 0 1 sz(1) N(1) 0 M(1) 0 Vm(4)

	@syntax {

		@subid 909

		@assert {

			sz == 0

		}

		@conv {

			swvec_D = SingleWordVector(Vd:D)
			swvec_N = SingleWordVector(Vn:N)
			swvec_M = SingleWordVector(Vm:M)

		}

		@asm vadd.f32 ?swvec_D swvec_N swvec_M

	}

	@syntax {

		@subid 910

		@assert {

			sz == 1

		}

		@conv {

			dwvec_D = DoubleWordVector(D:Vd)
			dwvec_N = DoubleWordVector(N:Vn)
			dwvec_M = DoubleWordVector(M:Vm)

		}

		@asm vadd.f64 ?dwvec_D dwvec_N dwvec_M

	}

}