summaryrefslogtreecommitdiff
path: root/plugins/arm/v7/opdefs/ldrh_A8879.d
blob: 4c21348e91e32f72d8bc0a10d881c5b8c10833ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

/* Chrysalide - Outil d'analyse de fichiers binaires
 * ##FILE## - traduction d'instructions ARMv7
 *
 * Copyright (C) 2017 Cyrille Bagard
 *
 *  This file is part of Chrysalide.
 *
 *  Chrysalide is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  Chrysalide is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with Foobar.  If not, see <http://www.gnu.org/licenses/>.
 */


@title LDRH (immediate, Thumb)

@id 78

@desc {

	Load Register Halfword (immediate) calculates an address from a base register value and an immediate offset, loads a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses on page A8-294.

}

@encoding (t1) {

	@half 1 0 0 0 1 imm5(5) Rn(3) Rt(3)

	@syntax {

		@conv {

			reg_T = Register(Rt)
			reg_N = Register(Rn)
			imm32 = ZeroExtend(imm5:'0', 32)
			maccess = MemAccessOffset(reg_N, imm32)

		}

		@asm ldrh reg_T maccess

	}

}

@encoding (T2) {

	@word 1 1 1 1 1 0 0 0 1 0 1 1 Rn(4) Rt(4) imm12(12)

	@syntax {

		@conv {

			reg_T = Register(Rt)
			reg_N = Register(Rn)
			imm32 = ZeroExtend(imm12, 32)
			maccess = MemAccessOffset(reg_N, imm32)

		}

		@asm ldrh.w reg_T maccess

	}

}

@encoding (T3) {

	@word 1 1 1 1 1 0 0 0 0 0 1 1 Rn(4) Rt(4) 1 P(1) U(1) W(1) imm8(8)

	@syntax {

		@assert {

			P == 1
			W == 0

		}

		@conv {

			reg_T = Register(Rt)
			reg_N = Register(Rn)
			imm32 = ZeroExtend(imm8, 32)
			maccess = MemAccessOffset(reg_N, imm32)

		}

		@asm ldrh reg_T maccess

	}

	@syntax {

		@assert {

			P == 1
			W == 1

		}

		@conv {

			reg_T = Register(Rt)
			reg_N = Register(Rn)
			imm32 = ZeroExtend(imm8, 32)
			maccess = MemAccessPreIndexed(reg_N, imm32)

		}

		@asm ldrh reg_T maccess

	}

	@syntax {

		@assert {

			P == 0
			W == 1

		}

		@conv {

			reg_T = Register(Rt)
			reg_N = Register(Rn)
			imm32 = ZeroExtend(imm8, 32)
			maccess = MemAccessPostIndexed(reg_N, imm32)

		}

		@asm ldrh reg_T maccess

	}

}