1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
/* OpenIDA - Outil d'analyse de fichiers binaires
* op_xor.c - décodage des OU exclusifs
*
* Copyright (C) 2008 Cyrille Bagard
*
* This file is part of OpenIDA.
*
* OpenIDA is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* OpenIDA is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Foobar. If not, see <http://www.gnu.org/licenses/>.
*/
#include <malloc.h>
#include "../instruction-int.h"
#include "opcodes.h"
#include "operand.h"
/******************************************************************************
* *
* Paramètres : data = flux de données à analyser. *
* pos = position courante dans ce flux. [OUT] *
* len = taille totale des données à analyser. *
* offset = adresse virtuelle de l'instruction. *
* proc = architecture ciblée par le désassemblage. *
* *
* Description : Décode une instruction de type 'xor' (16 ou 32 bits). *
* *
* Retour : Instruction mise en place ou NULL. *
* *
* Remarques : - *
* *
******************************************************************************/
asm_x86_instr *read_instr_xor_with_reg1632(const uint8_t *data, off_t *pos, off_t len, uint64_t offset, const asm_x86_processor *proc)
{
asm_x86_instr *result; /* Instruction à retourner */
AsmOperandSize oprsize; /* Taille des opérandes */
asm_x86_operand *reg2; /* Registre de source */
asm_x86_operand *reg1; /* Registre de destination */
result = (asm_x86_instr *)calloc(1, sizeof(asm_x86_instr));
/* Utilisation des registres 32 bits ? */
if (data[*pos] == 0x66)
{
oprsize = switch_x86_operand_size(proc);
(*pos)++;
}
else oprsize = get_x86_current_operand_size(proc);
ASM_INSTRUCTION(result)->opcode = data[(*pos)++];
/* TODO ! */
if ((data[*pos] & 0xc0) != 0xc0)
return NULL;
reg1 = x86_create_reg1632_operand_from_modrm(data[*pos], oprsize == AOS_32_BITS, true);
if (reg1 == NULL)
{
free(result);
return NULL;
}
reg2 = x86_create_reg1632_operand_from_modrm(data[*pos], oprsize == AOS_32_BITS, false);
if (reg2 == NULL)
{
free(result);
free(reg1);
return NULL;
}
(*pos)++;
ASM_INSTRUCTION(result)->operands = (asm_operand **)calloc(2, sizeof(asm_operand *));
ASM_INSTRUCTION(result)->operands_count = 2;
ASM_INSTRUCTION(result)->operands[0] = ASM_OPERAND(reg1);
ASM_INSTRUCTION(result)->operands[1] = ASM_OPERAND(reg2);
return result;
}
/******************************************************************************
* *
* Paramètres : data = flux de données à analyser. *
* pos = position courante dans ce flux. [OUT] *
* len = taille totale des données à analyser. *
* offset = adresse virtuelle de l'instruction. *
* proc = architecture ciblée par le désassemblage. *
* *
* Description : Décode une instruction de type 'xor' (16 ou 32 bits). *
* *
* Retour : Instruction mise en place ou NULL. *
* *
* Remarques : - *
* *
******************************************************************************/
asm_x86_instr *read_instr_xor8_with_reg1632(const uint8_t *data, off_t *pos, off_t len, uint64_t offset, const asm_x86_processor *proc)
{
asm_x86_instr *result; /* Instruction à retourner */
AsmOperandSize oprsize; /* Taille des opérandes */
asm_x86_operand *reg; /* Registre de destination */
asm_x86_operand *value; /* Valeur empilée */
result = (asm_x86_instr *)calloc(1, sizeof(asm_x86_instr));
/* Utilisation des registres 32 bits ? */
if (data[*pos] == 0x66)
{
oprsize = switch_x86_operand_size(proc);
(*pos)++;
}
else oprsize = get_x86_current_operand_size(proc);
ASM_INSTRUCTION(result)->opcode = data[(*pos)++];
/* TODO ! */
if ((data[*pos] & 0xc0) != 0xc0)
return NULL;
reg = x86_create_reg1632_operand_from_modrm(data[*pos], oprsize == AOS_32_BITS, false);
if (reg == NULL)
{
free(result);
return NULL;
}
(*pos)++;
value = create_new_x86_operand();
if (!fill_imm_operand(ASM_OPERAND(value), AOS_8_BITS, data, pos, len))
{
free(reg);
free(value);
free(result);
return NULL;
}
ASM_INSTRUCTION(result)->operands = (asm_operand **)calloc(2, sizeof(asm_operand *));
ASM_INSTRUCTION(result)->operands_count = 2;
ASM_INSTRUCTION(result)->operands[0] = ASM_OPERAND(reg);
ASM_INSTRUCTION(result)->operands[1] = ASM_OPERAND(value);
return result;
}
|